An Investigation into the Realities of a Quantum Datapath
نویسنده
چکیده
An Investigation into the Realities of a Quantum Datapath by Nemanja Isailovic Doctor of Philosophy in Computer Science University of California, Berkeley Professor John David Kubiatowicz, Chair Quantum computing has shown great potential for being able to solve certain problems which are intractable on classical machines. Peter Shor devised a means to factor large number in polynomial time on a quantum machine, a feat which would compromise modern public key cryptosystems. Further, simulation of quantum mechanical systems, which is exponential in both space and time on a classical machine, is expected to be far faster on a quantum machine. In this work, we present mechanisms for producing a laid out and scheduled quantum datapath tailored to a particular target circuit. We identify two key pieces of support infrastructure in a quantum datapath. First, some quantum operations require the use of helper qubits known as ancilla qubits which are not part of the target circuit specification. We introduce and design efficient ancilla factories to use as basic functional units in our datapath layouts. Second, we provide designs for the basic components that allow the construction of a teleportation network, which is necessary for long distance communication on a quantum datapath. We utilize our basic component designs in proposing a malleable architectural specification which we call Qalypso. The benefit of the flexibility of Qalypso lies in the ability to fine tune the various components of the datapath to suit the needs of a given quantum circuit. Ancilla bandwidth, network resources and interfacing of support infrastructure to data may all be tailored to fit circuit characteristics. To complete the process of laying out and scheduling a quantum circuit, we device heuristics for mapping the circuit onto Qalypso while simultaneously finalizing the datapath characteristics as appropriate for the circuit. Our methods produce a final realizable datapath layout and associated scheduling, both optimized for the circuit in question. We have implemented these heuristics in a quantum CAD flow toolset currently tailored to designing architectures in ion trap technology. We conclude this thesis by demonstrating the application of these heuristics through the automated toolset to construct a datapath and schedule optimized for Shor’s factorization algorithm.
منابع مشابه
An Investigation into the Realities of a
An Investigation into the Realities of a Quantum Datapath by Nemanja Isailovic Doctor of Philosophy in Computer Science University of California, Berkeley Professor John David Kubiatowicz, Chair Quantum computing has shown great potential for being able to solve certain problems which are intractable on classical machines. Peter Shor devised a means to factor large number in polynomial time on ...
متن کاملAnalytical Investigation of Frequency Behavior in Tunnel Injection Quantum Dot VCSEL
The frequency behavior of the tunnel injection quantum dot vertical cavitysurface emitting laser (TIQD-VCSEL) is investigated by using an analyticalnumericalmethod on the modulation transfer function. The function is based on therate equations and is decomposed into components related to different energy levelsinside the quantum dot and injection well. In this way, the effect of the tunnelingpr...
متن کاملELECTROCHEMICAL INVESTIGATION OF INHIBITORY OF NEW SYNTHESIZED TETRAZOLE DERIVATIVE ON CORROSION OF STAINLESS STEEL 316L IN ACIDIC MEDIUM
In this study, an organic compound inhibitor, namely N-benzyl-N-(4-chlorophenyl)-1H-tetrazole-5-amine (NBTA), was synthesized and the role of this inhibitor for corrosion protection of stainless steel (SS) exposed to 0.5 M H2SO4 was investigated using electrochemical, and quantum analysis. By taking advantage of potentiodynamic polarization, the inhibitory action of NBTA was found t...
متن کاملCommunication and Control for Quantum Circuits
Communication and Control for Quantum Circuits by Yatish Patel Doctor of Philosophy in Computer Science University of California, Berkeley Professor John Kubiatowicz, Chair Quantum computers will potentially be able to solve certain classes of problems more efficiently than possible on a classical computer. Due to the fragility of quantum data, a large scale quantum computer will require a robu...
متن کاملسالیتونهای متراکم و رقیق غبار یون- آکوستیک در پلاسمای کوانتومی چهار مؤلفهای
The propagation of nonlinear quantum dust ion-acoustic (QDIA) solitary waves in a unmagnetized quantum plasma whose constituents are inertialess quantum electrons and positrons, classical cold ions and stationary negative dust grains are studied by deriving the Korteweg–de Vries (KdV) equation under the reductive perturbation method. Quantum Hydrodynamic (QHD) equations are used to take into ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010